
Case Study for myFlix full-stack project

Duration
Serverside: 4 weeks
Clientside:   3 weeks

Credits to
Tutor: Othman Yamak
Mentor: Stephen Barungi

MeziFlix Demo

Teck-stack - MERN
 clientside

React
Bootstrap
Javascript
Netlify

serverside

Nodejs
Mangos
Express
Insamonia
Render

https://meziflix.netlify.app/
https://meziflix.netlify.app/


Overview
MeziFlix is a movie web app built with the MERN stack. It is inspired by IMDB, but, well, not quite as big. It provides
users with information about movies, directors, and genres. Users can create an account, update their personal
information, create a list of favorite movies, and search for movies.

Purpose & Context
I developed Meziflix as the front-end client component of a full-stack web application as a part of the web
development program at CareerFoundry. The application is built on top of the back end (database and RESTful
API), which I previously created.

Objective
The primary objective was to acquire hands-on experience and create a fully functional, end-to-end web
application in line with the principles of the MERN stack.



Approach 

This is the frontend client project of a backend API I developed in advance. Therefore I will expaint server side and client side parts below.

Serverside

I developed a RESTful API using Node.js and Express that interacts with a NoSQL database, MongoDB. The API uses HTTP request methods like
GET, POST, and  DELETE to access and perform the CRUD operation for retrieving and storing data from the database. The API returns movie
information in JSON format.

Basic
I first needed to determine if
I wanted a relational or non-
relational Database. After
testing with PostGreSQL
and MongoDB, I chose
MongoDB because it is a
non-relational database and
offers more flexibility. 

Business Logic
Next, I created models to keep
my data consistently formatted
and used Mongoose to interact
with the database. I developed
the application using Docker
and Docker Compose for better
development and feature
deployment.

Security
To secure my site, I chose HTTP
Basic Auth for initial login with
username and password together
with JWT token-based
authorization. For additional
security, I then implemented CORS
password hashing and data
validation.

Deployment
Finally, after testing all the API
endpoints with Insomian, I used
Render to deploy the Restful
API application and MongoDB
Atlas to host my database from
the Docker compose file.



Client-side

Frist Build
In this project, I learned and
gained hands-on experience
with MVC architecture. To
accomplish this, I chose React
because it is component-
based, fast, easy to maintain,
well-documented, and has a
big community front-end
framework. I then used the Vite
build tool to create and
complete the build operations. 

Create
Components
After the initial build was done,
I created React components for
each view and React hooks to
control the state of the app. I
utilized the Fetch-API to pull
the API I had previously
created. 

Deployment
Finally, after I had tested all of the
functionality of the app, I hosted a
finished version of the app on Netlify.

Once I completed the backend part, I used React.js as a frontend framework to create the UI needed for users to interact with the server
side as components. It is a SPA (single page application) and responsive web application. It provides several interface views, including a
movie view, a login view, a registration view, and a profile view (where users can update their user information and favorites list).

Design
I used React Bootstrap to style
the layout of the pages and
cards and to ensure consistent
styling. I also utilized client-side
app-routing to add
authentication to access views. 



Retrospective 

what I learned and enjoy?
What did I learn and enjoy? I was able to build a fully functional, responsive, full-stack web application using the MERN stack, which includes MongoDB, Express,
Node.js, and React. In addition, I was able to gain experience with HTTP user authentication and JWT authorization, and I tried out development with Docker and
Docker Compose. Last but not least, I learned to deploy in render, Netflix. 

What were the challenges?
The initial challenge was to develop a Docker container with two services, Node.js and Express, and the MongoDb with Mongosh database. Besides that, managing
the react state with hooks was a big challenge until I got my head around it. Thanks to many tutors and mentors for their support.

.

Final thoughts 
In conclusion, I've enjoyed the project and gained a lot of skills in developing a full-stack web application from scratch. This project taught me the ins and outs of full-
stack web development. With it, I completed the MERN stack.

Next steps
I will be refactoring the codebase to implement good proctics as I get more experience and update the UI. In addition, I would like to add an admin role to manage
the content of the app, for example to add, update movies. I also want to include features like whats trending, whats popular, ability to watch trailers of the movies
and movie ratings.



figure2: login screen

Normal

Links
API Backend linkReact Frontend link

MeziFlix Demo API Code

https://meziflix.netlify.app/
https://meziflix.netlify.app/
https://github.com/Mezekr/MeziFlix-app
https://github.com/Mezekr/MeziFlix-app

